Wallahua'lam
blog dalam proses baik pulih pada template/widget..
Dari Abu Hurairah r.a meriwayatkan bahawa Rasulullah SAW bersabda: Setiap hari Isnin dan hari Khamis, amal-amal manusia akan dipersembahkan dihadapan Allah SWT dan Allah SWT akan mengampuni mereka pada hari itu bagi orang yang tidak mensyirikkan sesuatu dengan Allah, kecuali seorang yang memusuhi akan saudaranya (orang ini akan kecewa dari pengampunan Allah). (Malaikat) akan mengatakan kepadanya: Tinggalkanlah kedua orang ini sehingga kedua-duanya bermaaf-maafan, tinggalkanlah kedua orang ini sehingga kedua-duanya saling bermaaf-maafan. (HR Muslim)
LULUS atau GAGAL adalah cara lama mengkategorikan seseorang. Cara baru ialah, PENGETAHUAN atau KEJAHILAN
news: human immunodeficiency virus (HIV) - mutitalented protein
credit : NIST
The Gag protein is central to the assembly of new HIV virus particles. (a) Folded Gag molecules (multicolored) arise in the cellular cytoplasm. (b) Gag binds the viral RNA (black wavy lines) and drags it into the forming particle. (c) Gag molecules also may create assembly sites, where (d) Gag must stretch out to pack into the growing virus. (e) Virus particles eventually bud off from the host cell.
New insights into the human immunodeficiency virus (HIV) infection process, which leads to acquired immunodeficiency syndrome (AIDS), may now be possible through a research method recently developed in part at the National Institute of Standards and Technology, where scientists have glimpsed an important protein molecule's behavior with unprecedented clarity.
Provided by National Institute of Standards and Technology : web
The Gag protein is central to the assembly of new HIV virus particles. (a) Folded Gag molecules (multicolored) arise in the cellular cytoplasm. (b) Gag binds the viral RNA (black wavy lines) and drags it into the forming particle. (c) Gag molecules also may create assembly sites, where (d) Gag must stretch out to pack into the growing virus. (e) Virus particles eventually bud off from the host cell.
New insights into the human immunodeficiency virus (HIV) infection process, which leads to acquired immunodeficiency syndrome (AIDS), may now be possible through a research method recently developed in part at the National Institute of Standards and Technology, where scientists have glimpsed an important protein molecule's behavior with unprecedented clarity.
The HIV protein, known as Gag, plays several critical roles in the assembly of the human immunodefeciency virus in a host cell, but persistent difficulties with imaging Gag in a lab setting have stymied researchers' efforts to study how it functions.
"A better understanding of Gag's behavior might allow researchers to develop antiviral drugs that target the HIV assembly process, which remains unassailed by medical science," says Hirsh Nanda, a postdoctoral researcher at the NIST Center for Neutron Research (NCNR) and a member of the multi-institutional research team. "Our method might reveal how to inhibit new viruses as they grow."
The Gag molecule is a microscopic gymnast. At different stages during HIV assembly, the protein twists itself into several different shapes inside a host cell. One shape, or conformation, helps it to drag a piece of HIV genetic material toward the cell membrane, where the viral particles grow. Gag's opposite end becomes anchored there, stretching the protein into a rod-like conformation that eventually helps form a barrier surrounding the infectious genes in the finished virus. But while scientists have been aware for years that Gag appears to play several roles in HIV assembly, the specifics have remained mysterious.
The research team potentially solved this problem by creating an artificial cell membrane where Gag can show off its gymnastic prowess for the neutron probes at the NCNR. The center includes a variety of instruments specifically designed to observe large organic molucles like proteins.
"We were able to mimic the different stages of the virus's development, and look at what Gag's conformation was at these various stages," Nanda says. "We saw conformations that had never been seen before."
Nanda describes the team's first paper* on the subject as an important first step in describing their observational method, which was a joint effort between NIST, the National Cancer Institute and Carnegie-Mellon University. They plan another paper detailing what the method has revealed about HIV.
"Our efforts have not yet shown us how many steps are involved in Gag's work assembling an HIV particle, but at least we can see what it looks like in each major interaction that likely occurs in the cell during assembly," Nanda says. "It may allow us to characterize them for the first time."
Nanda says that their technique will also allow scientists to examine large classes of membrane proteins, which like Gag are notoriously hard to examine.
More information: *H. Nanda, S.A.K. Datta, F. Heinrich, M. Lösche, A. Rein, S. Krueger, J.E. Curtis. Electrostatic interactions and binding orientation of HIV-1 matrix, studied by neutron reflectivity. Biophysical Journal, Vol. 99 (8), Oct. 20, 2010."A better understanding of Gag's behavior might allow researchers to develop antiviral drugs that target the HIV assembly process, which remains unassailed by medical science," says Hirsh Nanda, a postdoctoral researcher at the NIST Center for Neutron Research (NCNR) and a member of the multi-institutional research team. "Our method might reveal how to inhibit new viruses as they grow."
The Gag molecule is a microscopic gymnast. At different stages during HIV assembly, the protein twists itself into several different shapes inside a host cell. One shape, or conformation, helps it to drag a piece of HIV genetic material toward the cell membrane, where the viral particles grow. Gag's opposite end becomes anchored there, stretching the protein into a rod-like conformation that eventually helps form a barrier surrounding the infectious genes in the finished virus. But while scientists have been aware for years that Gag appears to play several roles in HIV assembly, the specifics have remained mysterious.
The research team potentially solved this problem by creating an artificial cell membrane where Gag can show off its gymnastic prowess for the neutron probes at the NCNR. The center includes a variety of instruments specifically designed to observe large organic molucles like proteins.
"We were able to mimic the different stages of the virus's development, and look at what Gag's conformation was at these various stages," Nanda says. "We saw conformations that had never been seen before."
Nanda describes the team's first paper* on the subject as an important first step in describing their observational method, which was a joint effort between NIST, the National Cancer Institute and Carnegie-Mellon University. They plan another paper detailing what the method has revealed about HIV.
"Our efforts have not yet shown us how many steps are involved in Gag's work assembling an HIV particle, but at least we can see what it looks like in each major interaction that likely occurs in the cell during assembly," Nanda says. "It may allow us to characterize them for the first time."
Nanda says that their technique will also allow scientists to examine large classes of membrane proteins, which like Gag are notoriously hard to examine.
Provided by National Institute of Standards and Technology : web
Labels
Tazkirah
Firman Allah SWT
Sarkasis
Motivasi
Ayat dan Surah dalam Al-Quran
Hadith Nabi
Travelog Jihad Terakhir
Motivation
Sarkasis Islamik
Allah SWT Says In The al-Quran
Madah Islam
Review Teknologi
Puisi
Tutorial Blogspot
Akuarium
Baitulmuslim
Hukum
Kata Sahabat Nabi
Kesihatan
Puisi Islamik
Tatatertib Di Masjid
Aquarist
Aquascape
Law Of Today
Tutorial Aquascape
Feqah
KeAgungan Asmaul Husna
Kesalahan Dalam Solat
Perubatan Cara Islam
Petua
Sayings From Prophet Muhammad SAW
Sayings of Prophet Muhammad SAW
Sugar Glider
Tasawuf
kerjaya kimpalan
planted tank